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Abstract

Multimodal variational autoencoders (VAEs) seek to model the joint distribution
over heterogeneous data (e.g. vision, language), whilst also capturing a shared rep-
resentation across such modalities. Prior work has typically combined information
from the modalities by reconciling idiosyncratic representations directly in the
recognition model through explicit products, mixtures, or other such factorisations.
Here we introduce a novel alternative, the Mutually supErvised Multimodal VAE
(MEME), that avoids such explicit combinations by repurposing semi-supervised
VAEs to combine information between modalities implicitly through mutual su-
pervision. This formulation naturally allows learning from partially-observed data
where some modalities can be entirely missing—something that most existing
approaches either cannot handle, or do so to a limited extent. We demonstrate
that MEME outperforms baselines on standard metrics across both partial and
complete observation schemes on the MNIST-SVHN (image–image) and CUB
(image–text) datasets. We also contrast the quality of the representations learnt by
mutual supervision against standard approaches and observe interesting trends in
its ability to capture relatedness between data.

1 Introduction

Modelling the generative process underlying heterogenous data, particularly data spanning multiple
perceptual modalities such as vision or language, can be enormously challenging. Consider for
example, the case where data spans across photographs and sketches of objects. Here, a data point,
comprising of an instance from each modality, is constrained by the fact that the instances are related
and must depict the same underlying abstract concept. An effective model not only needs to faithfully
generate data in each of the different modalities, it also needs to do so in a manner that preserves the
underlying relation between modalities. Learning a model over multimodal data thus relies on the
ability to bring together information from quite idiosyncratic sources in such a way as to overlap on
aspects they relate on, while remaining disjoint otherwise.

Variational autoencoders (VAEs) (Kingma and Welling, 2014) are a class of deep generative models
that are particularly well-suited for multimodal data as they employ the use of encoders—learnable
mappings from high-dimensional data to lower-dimensional representations—that provide the means
to combine information across modalities. They can also be adapted to work on data with instances
missing for some modalities; a consequence of the difficulties inherent in obtaining and curating
heterogenous data. Much of the work in multimodal VAEs involves exploring different ways to
model and formalise the combination of information with a view to improving the quality of the
learnt models (see § 2).
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Figure 1: Constraints on the representations. (a) VAE: A prior regularises the data encoding distribution through
KL. (b) Typical multimodal VAE: Encodings for different modalities are first explicitly combined, with the
result regularised by a prior through KL. (c) MEME (ours): Leverage semi-supervised VAEs to cast one
modality as a conditional prior, implicitly supervising/regularising the other through the VAE’s KL. Mirroring
the arrangement to account for KL asymmetry enables multimodal VAEs through mutual supervision.

Prior approaches typically combine information through explicit specification as products (Wu and
Goodman, 2018), mixtures (Shi et al., 2019), combinations of such (Sutter et al., 2021), or through
additional regularisers on the representations (Sutter et al., 2020; Suzuki et al., 2016). Here, we
explore an alternate approach that leverages advances in semi-supervised VAEs (Joy et al., 2021;
Siddharth et al., 2017) to repurpose existing regularisation in the VAE framework as an implicit
means by which information is combined across modalities (see Figure 1).

We develop a novel formulation for multimodal VAEs that views the combination of information
through a semi-supervised lens, as mutual supervision between modalities. We term this approach
Mutually supErvised Multimodal VAE (MEME). Our approach not only avoids the need for ad-
ditional explicit combinations, but it also naturally extends to learning in the partially-observed
setting—something that most prior approaches cannot handle. We evaluate MEME on standard met-
rics for multimodal VAEs across both partial and complete data settings, on two typical multimodal
data domains: MNIST-SVHN (image-image) and CUB (image-text), and show that it outperforms
prior work. We additionally investigate the ability of multimodal VAEs to capture the ‘relatedness’
across modalities in their learnt representations, by comparing and contrasting the characteristics of
our implicit approach against prior work.

2 Related work

Prior approaches to multimodal VAEs can be broadly categorised in terms of the explicit combination
of representations (distributions) from different modalities, namely concatenation and factorization.

Concatenation: Models in this category learn joint representation by either concatenating the inputs
themselves or their modality-specific representations. Examples for the former includes early work in
multimodal VAEs such as the JMVAE (Suzuki et al., 2016), triple ELBO (Vedantam et al., 2018)
and MFM (Tsai et al., 2019), which define a joint encoder over concatenated multimodal data.
Such approaches usually require the training of auxiliary modality-specific components to handle
the partially-observed setting, with missing modalities, at test time. They also cannot learn from
partially-observed data. In very recent work, Gong et al. (2021) propose VSAE where the latent
representation is constructed as the concatenation of modality-specific encoders. Inspired by VAEs
that deal with imputing pixels in images such as VAEAC (Ivanov et al., 2019), Partial VAE (Ma et al.,
2018), MIWAE (Mattei and Frellsen, 2019), HI-VAE (Nazábal et al., 2020) and pattern-set mixture
model (Ghalebikesabi et al., 2021), VSAE can learn in the partially-observed setting by incorporating
a modality mask. This, however, introduces additional components such as a collective proposal
network and a mask generative network, while ignoring the need for the joint distribution over data to
capture some notion of the relatedness between modalities.

Factorization: In order to handle missing data at test time without auxiliary components, recent
work propose to factorize the posterior over all modalities as the product (Wu and Goodman, 2018)
or mixture (Shi et al., 2019) of modality-specific posteriors (experts). Following this line of work,
Sutter et al. (2021) proposes to combine the two approaches (MoPoE-VAE) to improve learning in
settings where the number of modalities exceeds two. In contrast to these methods, mmJSD (Sutter
et al., 2020) combines information not in the posterior, but in a “dynamic prior”, defined as a function
(either mixture or product) over the modality-specific posteriors as well as pre-defined prior.

Table 1 provides a high-level summary of prior work. Note that all the prior approaches have some
explicit form of joint representation or distribution, where some of them induces the need for auxiliary
components to deal with missing data at test time, while others are established without significant
theoretical benefits. By building upon a semi-supervised framework, our method MEME circumvents
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this issue to learn representations through mutual supervision between modalities, and is able to deal
with missing data at train or test time naturally without additional components.

Table 1: We examine four characteristics: The ability to handle partial observation at test and train time, the form
of the joint distribution or representation in the bi-modal case (s, t are modalities), and additional components.
(3) indicates a theoretical capability that is not verified empirically.

Partial Test Partial Train Joint repr./dist. Additional

JMVAE 3 7 qΦ(z|s, t) qφs(z|s), qφt(z|t)
tELBO 3 7 qΦ(z|s, t) qφs(z|s), qφt(z|t)
MFM 3 7 qΦ(z|s, t) qφs(z|s), qφt(z|t)
VSVAE 3 3 concat(zs, zt) mask generative network
MVAE 3 (3) qφs(z|s)qφt(z|t)p(z) sub-sampling
MMVAE 3 7 qφs(z|s) + qφt(z|t) -
MoPoE 3 (3) qφs(z|s) + qφt(z|t) + qφs(z|s)qφt(z|t) -
mmJSD 3 7 f(qφs(z|s), qφt(z|t), p(z)) -
Ours 3 3 - -

3 Method

Consider a scenario where we are given a data spanning two modalities, s and t. The data is curated
in pairs (t, s) of these modalities, which might be thought of pars pro toto as “style” and “text”,
although we are by no means restricted to particular data types. We will further assume that some
proportion of observations have one of the modalities missing, leaving us with partially-observed
data. Using Ds,t to denote the proportion containing fully observed pairs from both modalities, and
Ds, Dt for the proportion containing observations only from modality s and t respectively, we can
decompose the data as D = Ds ∪ Dt ∪ Ds,t.

In aid of clarity, we will introduce our method by confining attention to this bi-modal case, providing
a discussion on generalising beyond two modalities later. Following established notation in the
literature on VAEs, we will denote the generative model using p, latent variable using z, and the
encoder, or recognition model, using q. Subscripts for the generative and recognition models, where
indicated, denote the parameters of deep neural networks associated with that model.

3.1 Semi-Supervised VAEs

To develop our approach we draw inspiration from semi-supervised VAEs which use additional
information, typically data labels, to extend the generative model. This facilitates learning tasks such
as disentangling latent representations and performing intervention through conditional generation.
In particular, we will build upon the work of Joy et al. (2021), who suggests to supervise latent
representations in VAEs with partial label information by forcing the encoder, or recognition model,
to channel the flow of information as s → z → t. They demonstrate that the model learns latent
representations, z, of data, s, that can be faithfully identified with label information t.

s

z t

q
φ

(z
|s

)

qϕ(t | z)

p
θ
(s
|z

)

pψ(z | t)

Figure 2: Simplified graphical
model from Joy et al. (2021).

Figure 2 shows a modified version of the graphical model from Joy
et al. (2021), extracting just the salient components, and avoiding
any other additional constraints therein. The label, here t, is denoted
as partially observed as not all observations s have associated labels.
Note that, following the information flow argument, the generative
model factorises as pθ,ψ(s, z, t) = pθ(s | z) pψ(z | t) p(t) (solid
arrows) whereas the recognition model factorises as qφ,ϕ(t, z | s) =
qϕ(t | z) qφ(z | s) (dashed arrows). This autoregressive formulation
of both the generative and recognition models is what enables the
“supervision” of the latent representation of s by the label, t, via the
conditional prior pψ(z | t) as well as the classifier qϕ(t | z).
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The corresponding objective for supervised data, derived as the (negative) variational free energy or
evidence lower bound (ELBO) of the model is

log pθ,ψ(s, t) ≥ L(s, t) = Eqφ(z|s)

[
qϕ(t|z)

qφ(z|s)
log

pθ(s|z)pψ(z|t)
qφ(z|s)qϕ(t|z)

]
+ log qφ,ϕ(t|s) + log p(t). (1)

A derivation of this objective can be found in Appendix A.

3.2 Mutual Supervision

Procedurally, a semi-supervised VAE is already multimodal. Beyond viewing labels as a separate
data modality, for more typical multimodal data (vision, language), one would just need to replace
labels with data from the appropriate modality, and adjust the corresponding encoder and decoder to
handle such data. Conceptually however, this simple replacement can be problematic.

Supervised learning encapsulates a very specific imbalance in information between observed data
and the labels—that labels do not encode information beyond what is available in the observation
itself. This is a consequence of the fact that labels are typically characterised as projections of the
data into some lower-dimensional conceptual subspace such as the set of object classes one may
encounter in images, for example. Such projections cannot introduce additional information into the
system, implying that the information in the data subsumes the information in the labels, i.e. that the
conditional entropy of label t given data s is zero: H(t | s) = 0. Supervision-based models typically
incorporate this information imbalance as a feature, as observed in the specific correspondences and
structuring enforced between their label y and latent z in Joy et al. (2021).

Multimodal data of the kind considered here, on the other hand, does not exhibit this feature. Rather
than being characterised as a projection from one modality to another, they are better understood as
idiosyncratic projections of an abstract concept into distinct modalities—for example, as an image of
a bird or a textual description of it. In this setting, no one modality has all the information, as each
modality can encode unique perspectives opaque to the other. More formally, this implies that both
the conditional entropies H(t | s) and H(s | t) are finite.

Based on this insight we symmetrise the semi-supervised VAE formulation by additionally construct-
ing a mirrored version, with s, t swapped along with their corresponding parameters. This has the
effect of also incorporating the information flow in the opposite direction to the standard case as
t→ z→ s, ensuring that the modalities are now mutually supervised. Extending the semi-supervised
VAE objective (1), we construct a bi-directional objective for MEME

LBi(s, t) =
1

2

[
L(s, t) + L(t, s)

]
, (2)

where both information flows are weighted equally. On a practical note, we find that it is important to
ensure that parameters are shared appropriately when mirroring the terms, and that the variance in the
gradient estimator is controlled effectively. Please see Appendices C and D for further details.

3.3 Learning from Partial Observations

In practice, prohibitive costs on multimodal data collection and curation imply that observations can
frequently be partial, i.e., have missing modalities. One of the main benefits of the method introduced
here is its natural extension to the case of partial observations on account of its semi-supervised
underpinnings. Consider, without loss of generality, the case where we observe modality s, but not its
pair t. Recalling the autoregressive generative model p(s, z, t) = p(s | z)p(z | t)p(t) we can derive
a lower bound on the log-evidence

log pθ,ψ(s) = log

∫
pθ(s | z)pψ(z | t)p(t) dz dt ≥ Eqφ(z|s)

[
log

pθ(s | z)
∫
pψ(z | t)p(t) dt

qφ(z | s)

]
. (3)

Estimating the integral p(z) =
∫
p(z | t)p(t) dt highlights another conceptual difference between

a (semi-)supervised setting and a multimodal one. When t is seen as a label, this typically implies
that one could possibly compute the integral exactly by explicit marginalisation over its support, or
at the very least, construct a reasonable estimate through simple Monte-Carlo integration. In Joy
et al. (2021), the authors extend the latter approach through importance sampling with the “inner”
encoder q(t | z), to construct a looser lower bound to (3).
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In the multimodal setting however, this poses serious difficulties as the domain of the variable t
is not simple categorical labels, but rather complex continuous-valued data. This rules out exact
marginalisation, and renders further importance-sampling practically infeasible on account of the
quality of samples one can expect from the encoder q(t | z) which itself is being learnt from data.
To overcome this issue, we adopt an optimisation approach inspired by the variational mixture of
posteriors (VAMP) model introduced by Tomczak and Welling (2018).

Noting that our model formulation includes a conditional prior pψ(z | t), we introduce a set of N
learnable pseudo-samples ut

i , i = 1, . . . , N (collectively denoted λt) to estimate the prior p(z) as a
mixture over these values pλt(z) = 1

N

∑N
i=1 pψ(z | ut

i ). Our objective for unobserved data is thus

L(s) = Eqφ(z|s)

[
log

pθ(s | z)pλt(z)

qφ(z | s)

]
= Eqφ(z|s)

[
log

pθ(s | z)

qφ(z | s)
+ log

1

N

N∑
i=1

pψ(z | ut
i )

]
. (4)

For a dataset D containing partial observations the overall objective (to maximise) becomes∑
s,t∈D

log pθ,ψ(s, t) ≥
∑
s∈Ds

L(s) +
∑
t∈Dt

L(t) +
∑

s,t∈Ds,t

LBi(s, t), (5)

This treatment of unobserved data distinguishes our approach from alternatives such as that of
Shi et al. (2019), where model updates for missing modalities are infeasible. Whilst there is the
possibility to perform multimodal learning in the weekly supervised case as introduced by Wu and
Goodman (2018), their approach directly affects the posterior distribution, whereas ours only affects
the regularization of the embedding during training. At test time, Wu and Goodman (2018) will
produce different embeddings depending on whether all modalities are present, which is typically at
odds with the concept of placing the embeddings of related modalities in the same region of the latent
space. Our approach does not suffer from this issue as the posterior remains unchanged regardless of
whether the other modality is present or not.

Learning with MEME Given the overall objective in (5), we train MEME through maximum-
likelihood estimation of the objective over a datasetD. Each observation from the dataset is optimised
using the relevant term in the right-hand side of (5), through the use of standard stocastic gradient
descent methods. Note that training the objective involves learning all the (neural network) parameters
(θ, ψ, φ, ϕ) in the fully-observed, bi-directional case. When training with a partial observation, say
just s, all parameters except the relevant likelihood parameter ϕ (for qϕ(t | z)) are learnt. Note that
the encoding for data in the domain of t is still computed through the learnable pseudo-samples ut,
denoted collectively as λt. This is reversed when training on an observation with just t.

Generalisation beyond two modalities Here, we develop our method by confining our attention
to the bi-modal case. We believe this to be a reasonable stance for two important reasons. Firstly, the
number of modalities one typically encounters in the multimodal setting is fairly small to begin with.
This is often a consequence of its parallels with embodied perception, where one is restricted by the
relatively small number of senses available such as sight, sound, and proprioception. Furthermore, the
vast majority of work on multimodal VAEs only really consider the bimodal setting, as evidenced by
the prior work discussed earlier (§ 2). Secondly, it is in fact quite straightforward to extend MEME
to settings beyond the bimodal case, by simply incorporating existing explicit combinations (e.g.
mixtures or products) on top of the implicit combination discussed here. Our focus in this work
lies in exploring and analysing the utility of implicit combination in the multimodal setting, and our
formulation and experiments reflect this focus.

4 Experiments

4.1 Learning from Partially Observed Data

In this section, we evaluate the performance of MEME following standard multimodal VAE metrics
as proposed in Shi et al. (2019). The two metrics we selected are cross coherence to evaluate the
semantic quality of reconstruction, as well as latent accuracy in a classification task to examine the
representation learnt in the latent space. Notably, since our model benefits from its implicit latent
regularisation and is able to learn from partially-observed data, we evaluate MEME’s performance
on the two metrics when different proportions of data are missing in either or both modalities. We
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Input

Output
Figure 3: MEME cross-modal generations for MNIST-SVHN.

being this bird has a bird brown
and and and very short beak.

this is a bird with a red breast
and a red head.

distinct this bird has wings that
are black and has an orange
belly.

this bird has a black top and
yellow bottom with black lines ,
the head and beak are small.

most this bird has wings that are
green and has an red belly

this is a large black bird with a
long neck and bright orange cheek
patches.

Figure 4: MEME cross-modal generations for CUB.

demonstrate our results on two datasets, namely an image↔ image dataset MNIST-SVHN (LeCun
et al., 2010; Netzer et al., 2011) and an image↔ caption dataset CUB (Welinder et al., 2010).

Cross Coherence Here, we focus mainly on the models’ ability to reconstruct in one modality,
say, t, given another modality s as input, while preserving the conceptual commonality between the
two. Following Massiceti et al. (2018); Shi et al. (2019), we report the cross coherence score on
MNIST-SVHN as the percentage of matching digits in the input and output modality, and on CUB we
perform canonical correlation analysis (CCA) on input-output pairs of cross generation to measure
the correlation between these samples.

In Figure 5 we plot the cross coherence for MNIST-SVHN and display the correlation results for CUB
in Figure 6, across different partial-observation schemes. The x-axis represents the proportion of data
that is paired, while the subscript to the method (see legends) indicates the modality that is presented.
For instance, MEME_MNIST with f = 0.25 indicates that only 25% of samples are paired, and the
other 75% only contain MNIST digits, and MEME_SPLIT with f = 0.25 indicates that the 75%
contains a mix of MNIST and SVHN samples that are unpaired and never observed together, i.e we
alternate depending on the interation. We provide qualitative results in Figure 3 and Figure 4.

We can see that our model is able to obtain higher coherence scores than baselines including
MVAE (Wu and Goodman, 2018) and MMVAE (Shi et al., 2019) in the fully observed case where
f = 1.0. This holds true for both MNIST-SVHN and CUB. We note that some of the reported results
of MMVAE in our experiments are worse than those seen in the original paper. This is because
MVAE is restricted to using Gaussian distributions for the posterior and prior, and therefore we
adopt Gaussian posteriors and priors for all three models to ensure like-for-like comparison. Better
results for MMVAE can be obtained with Laplace posteriors and priors, and we provide a comparison
between MEME and MMVAE under this setting in Appendix G.

As the percentage of observed pairs f decreases, the performance of MEME drops gradually, however
stays consistently higher than MVAE. We did not include results for MMVAE where f < 1.0 as the
model does not handle partial observations at train time.

It is interesting to see that cross-generating MNIST obtains a similar performance depending on
whether we partially observe MNIST or SVHN. The same is not true for MNIST→ SVHN, where
we see a dramatic decrease in coherence scores when partially observing MNIST. We posit that this
is because the information needed to generate an MNIST digit is typically sub-summed within an
SVHN digit (e.g. there is little style information associated with MNIST), making generation from
SVHN to MNIST easier, and from MNIST to SVHN more difficult.

In Figure 6 we can see that MEME consistently obtains higher correlations than MVAE across all
supervision rates, and higher than MMVAE in the fully supervised case. Generally, cross-generating
images yields higher correlation values, possibly due to the difficulty in generating semantically
meaningful text with relatively simplistic convolutional architectures. We would like to highlight that
fully observing images typically leads to poorer performance when cross-generating captions. Again,
possibly due to the difficulty in generating text, but also possibly due to a discord between how the
latent space is structured, where a similar pattern emerged when MNIST was only partially observed.
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Figure 5: Coherence between MNIST and SVHN (Left) and SVHN and MNIST (Right). Shaded area indicates
one-standard deviation of runs with different seeds.

Figure 6: Correlation between Image and Sentence (Left) and Sentence and Image (Right). Shaded area indicates
one-standard deviation of runs with different seeds.

Latent Accuracy We also conduct experiments to evaluate the quality of representation learnt in
the latent space. Again, following the practice in Shi et al. (2019), we fit a linear classifier to the
latent samples and compute the classification accuracy of predicting the input digit. The intuition is
that if a linear classifier can extract digit information from the latents, it indicates the presence of a
linear subspace that is structured according to the underlying class.

See results in Figure 7. Similar to our findings in cross coherence, MEME outperforms baselines
under both fully observed (f = 1.0) but for the partially observed (f < 1.0) setting it seems to
perform worse than MVAE when classifying MNIST. However, we note that MVAE fails from a
coherence perspective, indicating that it just optimises the latent space. However, we do notice that
MVAE_SPLIT seems to structure the latent space appropriately for MNIST, we posit that this is due to
the sub-sampling regime. Typically, given an SVHN image we obtain lower classification accuracies
than if we were given an MNIST image potentially due to the lack of structuring naturally occurring
from SVHN. We also see here that fully observing MNIST actually improves the classification score
for SVHN than if we fully observe SVHN; due to the presence of MNIST causing the latent space to
structure in a more suitable way for classification.

In this section, we demonstrated the strong performance of MEME given both fully observed and
partially observed multimodal data. Our method outperformed two state-of-the-art multimodal VAEs
(MVAE and MMVAE) consistently on two challenging multimodal datasets. Importantly, our method
performed well under different missingness mechanisms. As demonstrated in the experiments, it
learns from partially observed data when 1) data from one of the modalities is missing and 2) evenly
split, unpaired multimodal data is given to the model. Compared to prior work, such as Shi et al.
(2021), that only improves data efficiency when evenly split, unpaired multimodal data is provided,
our method is more generally applicable.
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Figure 7: Latent accuracies for MNIST and SVHN (Left) and SVHN and MNIST (Right). Shaded area indicates
one-standard deviation of runs with different seeds.

4.2 Evaluating Relatedness

Now that we have established that the representation learned by MEME contains rich class information
from the inputs, we also wish to analyse the relationship between the encodings of different modalities
by studying their “relatedness”, i.e. semantic similarity. The probabilistic nature of the learned
representations suggests the use of probability distance functions as a measure of relatedness, where
a low distance implies closely related representations and vice versa.

In the following experiments we use the 2-Wasserstein distance, W2, a probability metric with a
closed-form expression for Gaussian distributions (see Appendix E for more details). Specifically, we
compute dij =W2( q(z|si) ‖ q(z|tj) ), where q(z|si) and q(z|tj) are the individual encoders, for all
combination of pairs {si, tj} in the mini-batch, i.e {si, tj}, for i, j ∈ {1 . . . ,M} where M is the
number of elements in the mini-batch.

General Relatedness In this experiment we wish to highlight the disparity in measured relatedness
between paired vs. unpaired multimodal data. To do so, we plot dij on a histogram and color-code
the histogram by whether the corresponding data pair {si, tj} shows the same concept, e.g. same
digit for MNIST-SVHN and same image-caption pair for CUB. Ideally, we should observe smaller

Figure 8: Histograms of Wassertein distance for SVHN and MNIST (Top) and CUB (Bottom): MEME (Left),
MMVAE (middle) and MVAE (Right). Blue indicates unpaired samples and orange paired samples. We expect
to see high densities of blue at further distances and visa-versa for orange.
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distances between encoding distributions for data pairs that are related, and larger for ones that are
not.

In Figure 8, we see that MEME (left) yields higher mass at lower distance values for paired
multimodal samples compared to MMVAE and MVAE (middle/right column) than it does for
unpaired ones, featuring larger disparity in encoding distances between paired and unpaired instances.
This demonstrates MEME’s capability of capturing relatedness between multimodal samples in its
latent space, and further showcased its ability to learn good quality representation.

Class-contextual Relatedness To offer more insights on the relatedness of representations within
classes, we construct a distance matrix K ∈ R10×10 for the MNIST-SVHN dataset, where each
element Ki,j corresponds to the averageW2 distance between encoding distributions of class i of
MNIST and j of SVHN. A perfect distance matrix will consist of a diagonal of all zeros and positive
values in the off-diagonal.

See the class distance matrix in Figure 9 (top row), generated with models trained on fully observed
multimodal data. It is clear that our model (left) produces much lower distances on the diagonal, i.e.
when input classes for the two modalities are the same, and higher distances off diagonal where input
classes are different. A clear, lower-valued diagonal can also be observed for MMVAE (middle),
however it is less distinct compared to MEME, since some of the mismatched pairs also obtains
smaller values. The distance matrix for MVAE (right), on the other hand, does not display a diagonal
at all, reflecting poor ability to identify relatedness or extract class information through the latent.

To closely examine which digits are considered similar by the model, we construct dendrograms to
visualise the hierarchical clustering of digits by relatedness, as seen in Figure 9 (bottom row). We see
that our model (left) is able to obtain a clustering of conceptually similar digits. In particular, digits
with smoother writing profile such as 3, 5, 8, along with 6 and 9 are clustered together (right hand
side of dendrogram), and the digits with sharp angles, such as 4 and 7 are clustered together. THe
same trend is not observed for MMVAE nor MVAE. It is also important to note the height of each
bin, where higher values indicate greater distance between clusters. Generally the clusters obtained
in MEME are further separated for MMVAE, demonstrating more distinct clustering across classes.

Figure 9: Distance matrices for KL divergence between classes for SVHN and MNIST (Top) and dendrogram
(Bottom) for: Ours (Left), MVAE (middle) and MMVAE (Right).
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5 Discussion

Here we have presented a method which faithfully deals with partially observed modalities in
VAEs. Through leveraging recent advances in semi-supervised VAEs, we construct a model which is
amenable to multi-modal learning when modalities are partially observed. Specifically, our method
employs mutual supervision by treating the uni-modal encoders individually and minimizing a KL
between them to ensure embeddings for are pertinent to one another. This approach enables us to
successfully learn a model when either of the modalites are partially observed. Furthermore, our
model is able to naturally extract an indication of relatedness between modalities. We demonstrate
our approach on the MNIST-SVHN and CUB datasets, where training is performed on a variety of
different observations rates.
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A Derivation of the Objective

The variational lower bound for the case when s and t are both observed derives as:

log p(t, s) = log

∫
z

p(t, s, z)dz

≥
∫
z

log
p(s.t, z)

q(z|t, s)
q(z|t, s)dz

Following Joy et al. (2021), assuming s |= t|z and applying Bayes rule we have

q(z|t, s) =
q(z|s)q(t|z)

q(t|s)
, (6)

which can be substituted into the lower bound to obtain

log p(t, s) ≥
∫
z

log
p(s.t, z)q(t|s)
q(z|s)q(t|z)

q(z|s)q(t|z)

q(t|s)
dz

= Eq(z|s)
[
q(t|z)

q(t|s)
log

p(s|z)(z|t)
q(z|s)q(t|z)

]
+ log q(t|s) + log p(t).

B High Variance of the gradient estimator

During training, the term q(t|z)
q(t|s) introduces a very low signal to noise ratio. To combat this issue, we

modify the gradient of the objective, enabling us to learn meaningful parameters.

The gradient of the first term in the objective wrt φ is given as

∇φL(s, t;φ, ϕ, θ, ϑ) = Ep(ε)

{
∇φ
[
q(t|z)

q(t|s)

]
log

p(s|z)p(z|t)p(t)
q(z|s)q(t|z)

(7)

+

[
q(t|z)

q(t|s)

]
∇φ log

p(s|z)p(z|t)p(t)
q(z|s)q(t|z)

}
,

with z = t(ε, s;φ), using the reparameterization trick as usual. Here we observe that the first term
has a variance which is too high to learn anything meaningful from. Fortunately, we note that, under
certain conditions, the expected value of the first term is zero. Consequently, we simply remove this
gradient component from the objective, which can easily be achieved by introducing a stop gradient
on the q(t|z)

q(t|s) term.

Using the reparemterisation trick, with z = t(ε) for convenience, the first term of (7) can be expanded
as

Eε∼g(ε)

[∫
qϕ(t | z)qφ(z | s)dz∇zqϕ(t|z)∇φt(ε)

[
∫
qϕ(t | z)qφ(z | s)dz]2

log
pθ(s|z)pϑ(z|t)
qϕ(t|z)qφ(z|s)

]
(8)

− Eε∼g(ε)

[
qϕ(t|z)∇φ

∫
qϕ(t | z)qφ(z | s)dz

[
∫
qϕ(t | z)qφ(z | s)dz]2

log
pθ(s|z)pϑ(z|t)
qϕ(t|z)qφ(z|s)

]

Eε∼g(ε)

[∫
qϕ(t | z)qφ(z | s)dz∇zqϕ(t|z)∇φt(ε)

[
∫
qϕ(t | z)qφ(z | s)dz]2

log
pθ(s|z)pϑ(z|t)
qϕ(t|z)qφ(z|s)

]
(9)

− Eε∼g(ε)

[
qϕ(t|z)∇φ

∫
qϕ(t|z′)g(α)dα

[
∫
qϕ(t | z)qφ(z | s)dz]2

log
pθ(s|z)pϑ(z|t)
qϕ(t|z)qφ(z|s)

]
with z′ = t(α)

Eε∼g(ε)

[∫
qϕ(t|t(α))g(α)dα∇zqϕ(t|z)∇φt(ε)

[
∫
qϕ(t | z)qφ(z | s)dz]2

log
pθ(s|z)pϑ(z|t)
qϕ(t|z)qφ(z|s)

]
(10)

− Eε∼g(ε)

[
qϕ(t|z)

∫
∇z′qϕ(t|z′)∇φt(α)dα

[
∫
qϕ(t | z)qφ(z | s)dz]2

log
pθ(s|z)pϑ(z|t)
qϕ(t|z)qφ(z|s)

]
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Figure 10: SNR for encoder parameters (Left) and classifier parameters (Right), blue indicates that we apply the
stop gradient in Appendix B, orange indicates we do not. A higher value typically leads to improved learning.∫

Eε∼g(ε)

[∫
qϕ(t|t(α))g(α)dα∇zqϕ(t|z)∇φt(ε)

[
∫
qϕ(t | z)qφ(z | s)dz]2

log
pθ(s|z)pϑ(z|t)
qϕ(t|z)qφ(z|s)

]
dα (11)

−
∫

Eε∼g(ε)

[
qϕ(t|z)

∫
∇z′qϕ(t|z′)∇φt(α)dα

[
∫
qϕ(t | z)qφ(z | s)dz]2

log
pθ(s|z)pϑ(z|t)
qϕ(t|z)qφ(z|s)

]
dα

When the true posterior p(z|s) matches the approximate posterior qφ(z | s) and the predictive
distribution qϕ(t | z) matches the true distribution p(t|z), by applying Bayes rule, the term inside
the log is equivalent to p(s), which is independent of ε and α.

∫ ∫ [
qϕ(t|g(α))q(α)∇g(ε)qϕ(t|g(ε))∇φg(ε)q(ε)

[
∫
qϕ(t | z)qφ(z | s)dz]2

]
dεdα log p(s) (12)

−
∫ ∫ [

qϕ(t|g(ε))q(ε)∇g(α)qϕ(t|g(α))∇φg(α)q(α)

[
∫
qϕ(t | z)qφ(z | s)dz]2

]
dεdα log p(s)

Which subsequently equals zero, leading to our choice of removing this term from the gradient.

This modification can be viewed as the control variate strategy below

f̂(z) := f(z)− α(h(z)− Eqφ(z|s)[h(z)]), (13)

with α = 1 and E[f(z)] = E[f̂(z)] as required. Here, the definitions of f(z) and h(z) are

f(z) = ∇φ,ϕEq(z|s)

[
q(t|z)

q(t|s)
log

p(s|z)p(z|t)p(t)
q(z|s)q(t|z)

]
+∇φ,ϕqϕ,φ(t | s) (14)

h(z) = ∇φ,ϕ

[
q(t|z)

q(t|s)

]
log

p(s|z)p(z|t)p(t)
q(z|s)q(t|z)

. (15)

We plot the resulting SNR ratios for the case when we apply the stop gradient (blue) and when do not
(orange) in

C Weight Sharing

Another critical issue with naïvely training using (1), is that in certain situations qϕ(t | z) struggles
to learn features (typically style) for t, consequently making it difficult to generate realistic samples.
This is due to the information entering the latent space only coming from s, which contains all of
the information needed to reconstruct s, but does not necessarily contain the information needed
to reconstruct a corresponding t. Consequently, the term pθ(s | z) will learn appropriate features
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(like a standard VAE decoder), but the term qϕ(t | z) will fail to do so. In situations like this, where
the information in t is not subsumed by the information in s, there is no way for the model to know
how to reconstruct a t. Introducing weight sharing into the bidirectional objective (2) removes this
issue, as there is equal opportunity for information from both modalities to enter the latent space,
consequently enabling appropriate features to be learned in the decoders pθ(s | z) and pϕ(t | z),
which subsequently allow cross generations to be performed.

Furthermore, we also observe that when training with (2) we are able to obtain much more balanced
likelihoods Table 2. In this setting we train two models separately using (1) with s = MNIST and
SVHN and then with t = SVHN and s = MNIST respectively. At test time, we then ‘flip’ the
modalities and the corresponding networks, allowing us to obtain marginal likelihoods in each
direction. Clearly we see that we only obtain reasonable marginal likelihoods in the direction for
which we train. Training with the bidirectional objective completely removes this deficiency, as we
now introduce a balance between the modalities.

Table 2: Marginal likelihoods.

Train Direction

Test Direction s = M, t = S s = S, t = M Bi

s = M, t = S −14733.6 −40249.9flip −14761.3
s = S, t = M −428728.7flip −11668.1 −11355.4

D Reusing Approximate Posterior MC Sample

When approximating qϕ,φ(t | s) through MC sampling, we find that it is essential for numerical
stability to include the sample from the approximate posterior. Before considering why, we must
first outline the numerical implementation of qϕ,φ(t | s), which for K samples z1:K ∼ qφ(z | s) is
computed using the LogSumExp trick as:

log qϕ,φ(t | s) ≈ log

K∑
k=1

exp log qϕ(t|zk), (16)

where the ratio qϕ(t|z)
qϕ,φ(t|s) is computed as exp{log qϕ(t | z) − log qϕ,φ(t | s)}. Given that the

LogSumExp trick is defined as:

log

N∑
n=1

expxn = x∗ + log

N∑
n=1

exp(xn − x∗), (17)

where x∗ = max{x1, . . . , xN}. The ratio will be computed as

qϕ(t | z)

qϕ,φ(t | s)
= exp{log qϕ(t | z)− log qϕ(t|z∗)− log

K∑
k=1

exp[log qϕ(t|zk)− log qϕ(t|z∗)]},

(18)
where z∗ = arg maxz1:K

log qϕ(t|zk). For numerical stability, we require that log qϕ(t | z) 6�
log qϕ(t|z∗), otherwise the computation may blow up when taking the exponent. To enforce this, we
need to include the sample z into the LogSumExp function, doing so will cause the first two terms to
either cancel if z = z∗ or yield a negative value, consequently leading to stable computation when
taking the exponent.

E Closed Form expression for Wassertein Distance between two Gaussians

. The Wassertein-2 distance between two probability measures µ and ν on Rn is defined as

W2(µ, ν) := inf E(||X − Y ||22)
1
2 ,

with X ∼ µ and Y ∼ ν. Given µ = N (m1,Σ1) and ν = N (m2,Σ2), the 2-Wassertein is then given
as

d2 = ||m1 +m2||22 + Tr(Σ1 + Σ2 − 2(Σ
1
2
1 Σ2Σ

1
2
1 )

1
2 ).

For a detailed proof please see (Givens and Shortt, 2002).
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F Additional Results

Table 3: Coherence Scores for MNIST→ SVHN (Top) and for SVHN→MNIST (Bottom). Subscript indicates
which modality is always present during training, f indicates the percentage of matched samples. Higher is
better.

MNIST→ SVHN

Model f = 1.0 f = 0.5 f = 0.25 f = 0.125 f = 0.0625

MEMESVHN 0.625 ± 0.007 0.551 ± 0.008 0.323 ± 0.025 0.172 ± 0.016 0.143 ± 0.009
MMVAESVHN 0.581 ± 0.008 - - - -

MVAESVHN 0.123 ± 0.003 0.110 ± 0.014 0.112 ± 0.005 0.105 ± 0.005 0.105 ± 0.006

MEMEMNIST 0.625 ± 0.007 0.572 ± 0.003 0.485 ± 0.013 0.470 ± 0.009 0.451 ± 0.011
MMVAEMNIST 0.581 ± 0.008 - - - -

MVAEMNIST 0.123 ± 0.003 0.111 ± 0.007 0.112 ± 0.013 0.116 ± 0.012 0.116 ± 0.005

MEMESPLIT 0.625 ± 0.007 0.625 ± 0.008 0.503 ± 0.008 0.467 ± 0.013 0.387 ± 0.010
MVAESPLIT 0.123 ± 0.003 0.108 ± 0.005 0.101 ± 0.005 0.101 ± 0.001 0.101 ± 0.002

SVHN→MNIST

Model f = 1.0 f = 0.5 f = 0.25 f = 0.125 f = 0.0625

MEMESVHN 0.752 ± 0.004 0.726 ± 0.006 0.652 ± 0.008 0.557 ± 0.018 0.477 ± 0.012
MMVAESVHN 0.735 ± 0.010 - - - -

MVAESVHN 0.498 ± 0.100 0.305 ± 0.011 0.268 ± 0.010 0.220 ± 0.020 0.188 ± 0.012

MEMEMNIST 0.752 ± 0.004 0.715 ± 0.003 0.603 ± 0.018 0.546 ± 0.012 0.446 ± 0.008
MMVAEMNIST 0.735 ± 0.010 - - - -

MVAEMNIST 0.498 ± 0.100 0.365 ± 0.014 0.350 ± 0.008 0.302 ± 0.015 0.249 ± 0.014

MEMESPLIT 0.752 ± 0.004 0.718 ± 0.002 0.621 ± 0.007 0.568 ± 0.014 0.503 ± 0.001
MVAESPLIT 0.498 ± 0.100 0.338 ± 0.013 0.273 ± 0.003 0.249 ± 0.019 0.169 ± 0.001

F.1 Generative Capability

We report the mutual information between the parameters ω of a pre-trained classifier and the labels
y for a corresponding reconstruction x. The mutual information gives us an indication of the amount
of information we would gain about ω for a label y given x, this provides an indicator to how
out-of-distribution x is. If x is a realistic reconstruction, then there will be a low MI, conversely, an
un-realistic x will manifest as a high MI as there is a large amount of information to be gained about
ω. The MI for this setting is given as

I(y, ω | x,D) = H[p(y | x,D)]− Ep(ω|D) [H[p(y | x, ω)]] .

Rather than using dropout Gal (2016); Smith and Gal (2018) which requires an ensemble of mul-
tiple classifiers, we instead replace the last layer with a sparse variational GP. This allows us to
estimate p(y | x,D) =

∫
p(y | x, ω)p(ω | D)dω using Monte Carlo samples and similarly estimate

Ep(ω|D) [H[p(y | x, ω)]]. We display the MI scores in Table 6, where we see that our model is able
to obtain superior results.

G MMVAE baseline with Laplace Posterior and Prior

In Table 7 we display coherence scores using our implementation of MMVAE using a Laplace
posterior and prior. Our implementation is inline with the results reported in Shi et al. (2019),
indicating that the baseline for MMVAE is accurate.
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Table 4: Latent Space Linear Digit Classification.

MNIST

Model 1.0 0.5 0.25 0.125 0.0625

MEMESVHN 0.908 ± 0.007 0.881 ± 0.006 0.870 ± 0.007 0.815 ± 0.005 0.795 ± 0.010
MMVAESVHN 0.886 ± 0.003 - - - -

MVAESVHN 0.892 ± 0.005 0.895 ± 0.003 0.890 ± 0.003 0.887 ± 0.004 0.880 ± 0.003

OursMNIST 0.908 ± 0.007 0.882 ± 0.003 0.844 ± 0.003 0.824 ± 0.006 0.807 ± 0.005
MMVAEMNIST 0.886 ± 0.003 - - - -

MVAEMNIST 0.892 ± 0.005 0.895 ± 0.002 0.898 ± 0.004 0.896 ± 0.002 0.895 ± 0.002

MEMESPLIT 0.908 ± 0.007 0.914 ± 0.003 0.893 ± 0.005 0.883 ± 0.006 0.856 ± 0.003
MVAESPLIT 0.892 ± 0.005 0.898 ± 0.005 0.895 ± 0.001 0.894 ± 0.001 0.898 ± 0.001

SVHN

Model 1.0 0.5 0.25 0.125 0.0625

MEMESVHN 0.648 ± 0.012 0.549 ± 0.008 0.295 ± 0.025 0.149 ± 0.006 0.113 ± 0.003
MMVAESVHN 0.499 ± 0.045 - - - -

MVAESVHN 0.131 ± 0.010 0.106 ± 0.008 0.107 ± 0.003 0.105 ± 0.005 0.102 ± 0.001

OursMNIST 0.648 ± 0.012 0.581 ± 0.008 0.398 ± 0.029 0.384 ± 0.017 0.362 ± 0.018
MMVAEMNIST 0.499 ± 0.045 - - - -

MVAEMNIST 0.131 ± 0.010 0.106 ± 0.005 0.106 ± 0.003 0.107 ± 0.005 0.101 ± 0.005

MEMESPLIT 0.648 ± 0.012 0.675 ± 0.004 0.507 ± 0.003 0.432 ± 0.011 0.316 ± 0.020
MVAESPLIT 0.131 ± 0.010 0.107 ± 0.003 0.109 ± 0.003 0.104 ± 0.007 0.100 ± 0.008

Table 5: Correlation Values for CUB cross generations. Higher is better.

Image→ Captions

Model GT f = 1.0 f = 0.5 f = 0.25 f = 0.125

MEMEImage 0.106 ± 0.000 0.064 ± 0.011 0.042 ± 0.005 0.026 ± 0.002 0.029 ± 0.003
MMVAEImage 0.106 ± 0.000 0.060 ± 0.010 - - -

MVAEImage 0.106 ± 0.000 -0.002 ± 0.001 -0.000 ± 0.004 0.001 ± 0.004 -0.001 ± 0.005

MEMECaptions 0.106 ± 0.000 0.064 ± 0.011 0.062 ± 0.006 0.048 ± 0.004 0.052 ± 0.002
MMVAECaptions 0.106 ± 0.000 0.060 ± 0.010 - - -

MVAECaptions 0.106 ± 0.000 -0.002 ± 0.001 -0.000 ± 0.004 0.000 ± 0.003 0.001 ± 0.002

MEMESPLIT 0.106 ± 0.000 0.064 ± 0.011 0.046 ± 0.005 0.031 ± 0.006 0.027 ± 0.005
MVAESPLIT 0.106 ± 0.000 -0.002 ± 0.001 0.000 ± 0.003 0.000 ± 0.005 -0.001 ± 0.003

Caption→ Image

Model GT f = 1.0 f = 0.5 f = 0.25 f = 0.125

MEMEImage 0.106 ± 0.000 0.074 ± 0.001 0.058 ± 0.002 0.051 ± 0.001 0.046 ± 0.004
MMVAEImage 0.106 ± 0.000 0.058 ± 0.001 - - -

MVAEImage 0.106 ± 0.000 -0.002 ± 0.001 -0.002 ± 0.000 -0.002 ± 0.001 -0.001 ± 0.001

OursCaptions 0.106 ± 0.000 0.074 ± 0.001 0.059 ± 0.003 0.050 ± 0.001 0.053 ± 0.001
MMVAECaptions 0.106 ± 0.000 0.058 ± 0.001 - - -

MVAECaptions 0.106 ± 0.000 0.002 ± 0.001 -0.001 ± 0.002 -0.003 ± 0.002 -0.002 ± 0.001

MEMESPLIT 0.106 ± 0.000 0.074 ± 0.001 0.061 ± 0.002 0.047 ± 0.003 0.049 ± 0.003
MVAESPLIT 0.106 ± 0.000 -0.002 ± 0.001 -0.002 ± 0.002 -0.002 ± 0.001 -0.002 ± 0.001
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Table 6: Mutual Information Scores. Lower is better.

MNIST

Model 1.0 0.5 0.25 0.125 0.0625

OursSVHN 0.075 ± 0.002 0.086 ± 0.003 0.101 ± 0.002 0.102 ± 0.004 0.103 ± 0.001
MMVAESVHN 0.105 ± 0.004 - - - -

MVAESVHN 0.11 ± 0.00551 0.107 ± 0.007 0.106 ± 0.004 0.106 ± 0.012 0.142 ± 0.007

OursMNIST 0.073 ± 0.002 0.087 ± 0.001 0.101 ± 0.001 0.099 ± 0.001 0.104 ± 0.002
MMVAEMNIST 0.105 ± 0.004 - - - -

MVAEMNIST 0.11 ± 0.00551 0.102 ± 0.00529 0.1 ± 0.00321 0.1 ± 0.0117 0.0927 ± 0.00709

SVHN

Model 1.0 0.5 0.25 0.125 0.0625

OursSVHN 0.036 ± 0.001 0.047 ± 0.002 0.071 ± 0.003 0.107 ± 0.007 0.134 ± 0.003
MMVAESVHN 0.042 ± 0.001 - - - -

MVAESVHN 0.163 ± 0.003 0.166 ± 0.010 0.165 ± 0.003 0.164 ± 0.004 0.176 ± 0.004

OursMNIST 0.036 ± 0.001 0.048 ± 0.001 0.085 ± 0.006 0.111 ± 0.004 0.142 ± 0.005
MMVAEMNIST 0.042 ± 0.001 - - - -

MVAEMNIST 0.163 ± 0.003 0.175 ± 0.00551 0.17 ± 0.0102 0.174 ± 0.012 0.182 ± 0.00404

Table 7: Coherence Scores for MMVAE using Laplace posterior and prior.

MNIST SVHN
91.8% 65.2%
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